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Abstract

A high-resolution dynamic response is important for characterizing a system’s dynamic properties.
Measurements involving a limited number of points on the structure can be expanded to unmeasured
points through approximation or model-based expansion techniques that rely on the introduction of a
numerical model. Recently, an expansion method called System Equivalent Model Mixing (SEMM) was
proposed where a numerical DoF set is used to extend an experimental model with limited measurement
points. The concept of SEMM is similar to the well-known SEREP and VIKING expansion methods,
but it is defined in the frequency domain. Using the dynamic substructuring approach, the equivalent
experimental and numerical models are coupled so that the hybrid model inherits the dynamic prop-
erties of both models. Although the method has been well adopted, there is still no comprehensive
phenomenological analysis to determine the influence of the method’s parameters on the consistency of
the hybrid model and thus on the accuracy of the expansion process. This paper addresses the issue by
evaluating the accuracy of the SEMM expansion process, focusing on the influence of the regularity of
the so-called equivalent numerical model. The introduction of quasi-equivalent numerical models into
SEMM is analysed here, which can differ not only with respect to the mass and stiffness properties
but also in terms of the geometry and boundary conditions. The parametric study was carried out on
a real component of a household appliance, and the most influential parameters in terms of accuracy
of the SEMM expansion process were identified. The analysis showed that accurate expansion results,
with a small number of experimental points, is achieved if only those points are well scattered across
the analysed system.

Keywords: Experimental model, Full-field response, Expansion process, System equivalent model
mixing, Dynamic substructuring, Frequency domain

1. Introduction

A dynamic response measurement is important for the design and optimization of the vibro-acoustic
properties of a complex system. Experimental modelling is crucial structural dynamics analysis, as it
contains properties that are analytically difficult to obtain [1]. The conventional measurement methods
using accelerometers or laser vibrometers allow the user to acquire the dynamic information only at
a discrete point. The weakness of this approach is that the measurements are usually carried out on
a limited number of points, due to the time-consuming experimental testing, difficult accessibility or
limited amount of measuring equipment [2].

More advanced experimental techniques to acquire dense system response involve laser scanning
vibrometer [3, 4, 5] and optical methods such as Digital Image Correlation and Digital Photogramme-
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try [6, 7], enabling full-field, non-contact vibration measurements. To obtain a 3D structural response,
several measurement systems must be arranged in an appropriate configuration (e.g., stereo) to recon-
struct the spatial displacement response. This proves to be a tedious task that requires an advanced
and expensive experimental setup, often combined with a demanding post-processing procedure. In
addition, this type of experimental setup enables only a line-of-sight measurement, thus responses of
hidden components are inaccessible [8].

Alternatives to determining the dynamic properties in unmeasured degrees of freedom (DoFs) are
the model-updating and expansion methods. Model updating is an iterative procedure of updating the
numerical model in such a way that it converges with the measurement results [9, 10]. Many model-
updating techniques have been proposed, tested and published. They can be subdivided according to
the type of measured data used and the model parameters that are updated [11]. All these methods
are usually very time-consuming and involve computationally intensive operations.

On the other hand, expansion methods enable the expansion of the measurement at a limited
number of points to a denser set of DoFs. The majority of techniques rely on finite-element (FE)
numerical models, which present a framework for the expansion process, and are therefore classified
as model-based methods [12]. Chen et al. [8] proposed a non-model-based expansion technique, where
the measurements at a limited number of points are expanded to a full-field dynamic response without
the need for a FE model. The method is defined in the modal space and uses orthogonal primary
functions called shape functions to expand the experimental mode shapes. This polynomial-based
expansion technique has been used for the dynamic characterization of plate-like structures [8] and also
for cylindrical shell structures [13].

More established model-based expansion methods rely on a FE-based transformation matrix, map-
ping the limited measured DoFs to the augmented set of DoFs [14]. There are several well-established
expansion techniques developed in the modal space. The System Equivalent Reduction-Expansion Pro-
cess (SEREP) was proposed in [15] and has commonly been used for the expansion of data at limited
points in a variety of applications [16, 17, 18]. To extend the applicability of the SEREP procedure,
a set of data-conditioning techniques known as the Variability Improvement of Key Inaccurate Node
Groups (VIKING) [19]) are applied. An advantage of the modal methods is the ability to select fewer
target modes than measured DoFs and thereby induce a smoothing of the results.

Since the measured data are usually in the form of frequency-response functions (FRFs), Klassen
et al. [20] introduced the System Equivalent Model Mixing (SEMM) method, which can be considered
as an expansion method, fully defined in the frequency domain. With the use of SEMM, equivalent
models of the same structure are dynamically coupled using the Dynamic Substructuring approach [21].
Theoretically, a numerical and experimental model can be coupled to form a new hybrid model that
consists of experimental dynamic properties and contains the DoF set provided by a numerical model.
The SEMM method does not rely on modal identification, which can be problematic when it comes to
real systems that exhibit a high modal density [22, 23], strong damping [24] and near-to-node sensor
positioning [25].

The SEMM method is already an established expansion method, and is used in a variety of ap-
plications, such as joint identification [26], correction of noisy data from high-speed cameras [27],
data-consistency identification [28, 29], admittance estimation from acoustics measurements [30] and
applications in the automotive industry [31].

Although the SEMM method has been widely adopted, there is still no general study to identify
the influential parameters and their effect on the accuracy of the expansion process [32]. This paper
addresses the issue by evaluating the accuracy of the SEMM expansion process, especially in terms of the
regularity of the so-called equivalent numerical model. In fact, the article introduces a quasi-equivalent
numerical model to the SEMM method and analyses the effect of boundary conditions, geometry
simplification and material properties on the consistency of the expansion process. In addition, the
variation of the experimental model is also analysed with respect to the number and distribution of the
excitation and response points.

The parametric study is performed on a real-life component of a household appliance to identify
the most influential parameters of the SEMM expansion process. The analysis was performed with five
different numerical models, which differs in terms of geometry and boundary conditions. The quality
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of the expansion process was accessed using the FRAC and MAC criteria, comparing the expanded
full-field vibration response with the actual reference measured response.

The results show that the expansion process is more accurate the more excitation and response
points are included in the experimental model. An accurate expansion process with a small number
of response and excitation points is feasible only when the experimentally observed DoFs are well
scattered over the given object and the numerical model presents consistent basics for the expansion
process. Based on the presented analysis, guidelines are given for the proper selection of the parameters
in the SEMM expansion process.

The paper is organized as follows. The following section briefly summarizes the theory of the SEMM
method. Next, the full-field expansion using the SEMM method to mix quasi-equivalent models is
presented in Section 3. In Section 4, systematic analyses of the proposed method are performed on
a complex structure presented by the side panel of the washing machine. Finally, the conclusions are
drawn in Section 5.

2. System equivalent model mixing (SEMM)

The SEMM method was introduced by Klassen et al. [20] and is based on the dynamic substructur-
ing approach using Lagrange multiplier frequency-based substructuring (LM FBS) [21]. While the LM
FBS method tries to couple the response models of multiple different structures, the SEMM method
assembles equivalent models on a single substructure. For the sake of completeness, a basic recap of
the LM FBS method theory is presented [33]. To consider n subsystems, all the local matrices are
incorporated into a block-diagonal form. The equation of motion of the discrete dynamic subsystem in
the frequency domain is:1

u = Y (f + g) , where: Y =

Y1

. . .
Yn

 , u =

u1

...
un

 , f =

f1

...
fn

 , g =

g1...
gn

 . (1)

The vector of DoFs is u and represents the responses to the external force vector f and g is the vector
of connecting forces with the other substructures to assure equilibrium conditions. The admittance
matrix of all the considered subsystems in block-diagonal form is denoted with Y. The compatibility
and equilibrium conditions are introduced with the signed Boolean matrix B (Eq. (2)), where the
interface forces are represented by the Lagrange multipliers vector λ.

Bu = 0, g = −BTλ (2)

Using the equilibrium and compatibility conditions and eliminating the Lagrange multiplier vector λ,
the coupled structure’s response is obtained, presenting the basic equation for the whole SEMM theory:

u = Ỹ f =
[
Y −YBT

(
BYBT

)−1
BY

]
f . (3)

The SEMM method is based on the parent model (Fig. 1a), providing the DoF set. The overlay
model (Fig. 1b) introduces the real dynamic properties. To form the final hybrid model (Fig. 1d), the
dynamic properties of the parent model are eliminated with the removed model (Fig. 1c).

The procedure applies a substructuring approach to expand the model dynamics contained in an
overlay model Yov onto the DoF space of a parent model Ypar [34]. Following Eq. (1) the response of
the hybrid model can be formulated as:

u = Y (f + g) , where: Y =

[
Ypar

−Yrem

Yov

]
, u =

[
upar

urem

uov

]
, f =

[
fpar

f rem

fov

]
, g =

[
gpar

grem

gov

]
. (4)

1An explicit dependency on frequency is omitted to improve the readability of the notation, as will be the case for the
remainder of the paper.
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Figure 1: Equivalent models for SEMM method; a) Parent model Ypar, b) Overlay model Yov, c) Removed model Yrem,
d) Hybrid model YSEMM.

The DoF set of the parent model contains the internal (i) and boundary (b) DoFs. The boundary DoFs
must overlap with the overlay model so the dynamic coupling can be performed, while the internal DoFs
of the parent model can be unique. The equivalent models appearing in the SEMM method are arranged
by separating the internal and boundary DoFs in the admittance matrices:

Ypar =
[
Yii Yib
Ybi Ybb

]par
, Yov = [Ybb]ov , Yrem = [Ybb]par . (5)

The process of dynamic decoupling of the removed model and the coupling of the overlay model to
the parent model are achieved by applying compatibility and equilibrium conditions between all the
models, just like for coupling the multiple subsystems (Eq. (2)). Following the LM FBS methodology
by elimination of the Lagrange multiplier, the final equation is defined as:

Y = Y −YBT
(
BYBT

)−1
BY. (6)

By considering the localization matrix, a reformulation to primal notation is achieved and the single-
line form of the basic SEMM method using primary admittance can be written as:

YSEMM = [Y]par −
[
Yib
Ybb

]par
(Yrem)−1 (Yrem −Yov) (Yrem)−1 [Ybi Ybb]par . (7)

The basic SEMM method also has some extensions increasing its robustness [20]. One of them is the
ability to remove spurious peaks, which are a consequence of the conflicting dynamics between the
models [34]. If the removed interface is extended to all the internal DoFs (Ypar = Yrem), then the final
form of the fully extended SEMM method in a single-line2 notation is:

YSEMM = Ypar −Ypar ([Ybi Ybb]rem)+ (Yrem
bb −Yov)

([
Yib
Ybb

]rem)+

Ypar. (8)

3. Using SEMM as an expansion technique

Here, the procedure for expanding the measurements from a limited number of points to a full-field
dynamic response using the SEMM method is presented. Conventionally, the SEMM method is intended
for coupling equivalent models of the same structure, whereby the numerical model is considered as a
digital twin of the experimental model [20].

We are often interested in the detailed dynamic response of only a certain sub-component in the
system. In that case, numerical modelling of the entire system and its experimental validation proves
to be very tedious [35] or, in some cases, even an impossible task [36]. Therefore, it would be convenient
if we could obtain the vibrational response of the specific sub-component, by measuring its response
at the limited number of points and then obtain a full-field response by expansion using the SEMM
method.

The SEMM method performs the expansion by dynamic coupling of the experimental model with a
numerical model that introduces consistency between given DoFs. Therefore, the numerical model must

2A complete derivation of a single-line formulation is here omitted due to the clarity of the article; an interested reader
is referred to [20].
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provide proper physical connections between the DoFs. It is well known that the SEMM expansion
gives reliable results in the case of an accurate numerical model [37].

Here we propose a different methodology for the SEMM formulation. The experimental model is
acquired on a real sub-component, mounted in the assembled configuration, while the numerical model
represents the analysed structure decoupled from the rest of the system.

The whole idea is shown schematically in Fig. 2. It is proposed that a sub-component’s numerical
model is developed independently of the rest of the system. However, the question arises as to how
accurate the numerical model must be to consider it as equivalent to the experimental model. The
accuracy of the numerical model is strongly influenced by the applied boundary conditions. These are
difficult to model, taking into account the connections with other sub-components in the entire system.
In addition, in some cases, the detailed geometries of the components are not even accessible, as in the
case with complex electromechanical components.

The article systematically analyses the possibility of including a so-called quasi-equivalent numerical
model in the SEMM expansion process. These models can differ significantly in terms of geometry and
boundary conditions with respect to the real structure. Thus, a full analysis is performed to deduce how
the accuracy of the numerical model in combination with the experimental model affects the consistency
of the expansion process.

Analysed
subsystem

?

?

?

?
A

Coupled structure

A?

??

Numerical model

Experimental model

A

A?

??

Numerical
model

Experimental
model

Hybrid model
SEMM

A A?

??

A?

??
+ =

Figure 2: SEMM expansion process including quasi-equivalent models.

A fully extended form of the SEMM method (Eq. (8)) is applied as it is best suited for the expansion
process. To combine quasi-equivalent models, the notation of the SEMM method is slightly adjusted:

YSEMM
in = Ypar

ex −Ypar
ex

([
Ybi Ybb

]rem
ex

)+ ([
Ybb

]rem
ex
−Yov

in

)([Yib

Ybb

]rem
ex

)+

Ypar
ex , (9)

where the index •in refers to the included and index •ex refers to the excluded. All the mixed models still
describe the same structure; however, they can be considered as quasi-equivalent since they can differ in
terms of geometry and applied boundary conditions. The overlay model is obtained experimentally by
considering the component integrated into the entire system. The parent and removed models are based
on a numerical model of the component, which is modelled independently of the overall system. Such
an approach allows easier numerical modelling of a particular component. Since the numerical model
of the analysed system does not include connections with other components, its dynamic properties do
not correlate well with the actual situation.

4. Analysis of the method on an experimental case-study

The proposed SEMM-expansion method was used to expand the vibration response from a limited
number of measured points on the side panel of a washing machine (Fig. 3). It represents a real complex
structure whose accurate determination of the full-field response is essential to perform an effective
vibro-acoustic optimization of the product. It is generally accepted that the design and especially the
vibro-acoustic performance contribute to the customer perception of a premium product, and hence its
value on the market.
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Home appliances are designed in an increasingly modular fashion, combining in-house-developed
products with outsourced components (Fig. 3a). With the increasing product complexity, the question
arises as to how accurately, using only numerical models, the actual behaviour of the individual com-
ponents (Fig. 3c) of the whole system can be represented. Alternatively, the vibration response of the
structure could be measured at a limited number of points and then expanded to obtain a full-field
vibration response.

(a) (b) (c)

Figure 3: Analysed washing machine; a) cross-section, b) side panel included in the washing machine, c) exploded view
of the analysed side panel.

This paper analyses the performance of the SEMM expansion process regarding the number and
location of the excitation and response points in the experimental model, as well as with respect to the
consistency of the numerical model. Therefore, five different numerical models were proposed in the
expansion process, which differs in terms of geometry and boundary conditions. To assess the quality of
the expansion process, FRAC [38] and MAC [39] criteria were used to compare the expanded full-field
vibration response with the actual measured vibration response. The analysis aimed to check whether
the modal shapes obtained and the FRFs are similar in shape to the reference ones, therefore these
criteria, not accessing amplitudes, are sufficient. However, discrepancies in amplitudes can be observed
using coherence criteria [2] or modal scale factor [39].

4.1. Experimental response model

The vibration response was experimentally obtained in the form of frequency-response functions
(FRFs) with a side panel attached to the washing machine (Fig. 4a). To acquire the reference measure-
ment, the structure was excited with a modal hammer (PCB 086C03 with a rubber tip) at 170 points,
and seven triaxial accelerometers (PCB 356A32) were used to measure the response, as shown in Fig. 4b.
To acquire signals, six signal acquisition modules with 24-bit resolution (NI 9234) were mounted to the
measurement chassis (NI 9172). Signals were measured with a sampling rate of 25,6 kS/s with an
acquisition time of one second.

Even though the system’s response was measured only at seven points, it can be considered, from a
mode shape point of view, as a high-resolution. Since the displacement receptance matrix is reciprocal,
a high-resolution response can be obtained either by a large number of response points and a low
number of excitation points [40] or vice versa, as was done in our case. By exploiting the reciprocity of
the admittance matrix, the excitation at 170 points can be transposed and we can observe the response
of the system at 170 response points. This high-resolution experimental model serves as a reference for
assessing the quality of the expansion process.

Typically, the experimental model consists of a smaller number of excitation and response points.
To analyse the performance of the SEMM expansion process, different combinations of measured DoFs
are deduced from the entire experimental model. With this approach, it was possible to characterize
the influence of the number and location of the excitation and response points on the accuracy of the
expansion process.

The maximum rotational velocity of the washing machine is 2000 rpm (33 Hz), so the upper limit
of the frequency range was set to 100 Hz. The modal testing was carried out with a soft rubber tip
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Figure 4: Experimental modal analysis of side panel of washing machine; a) experimental setup, b) locations of response
and excitation points.

on a modal hammer, which made it possible to excite the frequency range up to 100 Hz (Fig. 5). To
consider frequencies above 100 Hz, the experiment must be performed with a harder hammer tip, which
would shorten the pulses and thus excite a higher frequency range. In Fig. 6 all the measured FRFs in
the z-direction are presented. It is possible to identify six natural frequencies (Table 1).

0 100 200 300 400 500
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−20
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)
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B
]

Figure 5: Force spectra using a soft tip on the modal hammer.
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Figure 6: All experimentally obtained FRFs in z direction with marked identified natural frequencies.

The mode shapes (MS) of the analysed structure were obtained using the Complex Mode Indication
Function (CMIF) [41]. Singular-value decomposition (SVD) is performed on the FRFs at each frequency

7



Table 1: Natural frequencies of side panel mounted to washing machine.

Natural freq. 1. 2. 3. 4. 5. 6.

Value [Hz] 14 40 49 59 78 91

point, resulting in a vector of singular values with the corresponding left and right singular vectors.
The left singular vector represents the response modes, and the right singular vector represents the
excitation modes. At the resonant frequencies, they can be considered as a good approximation of
the mode shapes (Fig. 7) and the modal participation vectors, respectively. The first analysed mode
represents the rigid displacement of the side panel due to the overall vibration response of the washing
machine. All the other modes represent the distinct plate-like vibration modes of the side panel. The
second and the third mode shapes are similar, and the reason for the 9 Hz difference between them
is most likely due to the internal dynamics of the washing machine. The complex structure inside it
results in two natural frequencies, close to each other, and are reflected in a very similar response of
the plate.

Freq.: 14 Hz

(a)

Freq.: 40 Hz

(b)

Freq.: 49 Hz

(c)

Freq.: 59 Hz

(d)

Freq.: 78 Hz

(e)

Freq.: 91 Hz

(f)

Figure 7: The first 6 experimentally acquired mode shapes of the analysed side panel mounted on the washing machine;
a) 1st MS, b) 2nd MS, c) 3rd MS, d) 4th MS, e) 5th MS, f) 6th MS.

To prove the accuracy of the identified mode shapes using the CMIF method, the modal shapes were
also determined with the multi-reference modal identification method [42]. Comparing both identified
mode shapes with the MAC criterion (Fig. 8) a good correlation can be identified. The diagonal MAC
values are not precisely of value one since were the compared mode shapes observed with different
methods.
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Figure 8: Comparison of experimental mode shapes with MAC criterion, provided by CMIF and multi-reference modal
identification method.
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4.2. Numerical model of analysed sub-component

The numerical model is constructed only for the side panel of the washing machine, as shown in
Fig. 9a. The structure was modelled as a surface body (Fig. 9b) and meshed with 2D finite elements
(Fig. 9c). Material properties are given in Table 2. With the numerical model was provided first 50
natural frequencies and corresponding mode shapes. FRFs were generated by the modal-superposition
method, with damping neglect.

(a) (b) (c)

Figure 9: Development of numerical model for FEM analysis; a) original CAD model, b) simplified geometry, c) FEM
model.

Table 2: Material properties of side panel.

Parameter Thickness [mm] Young’s modulus [GPa] Density [kg/m3] Poisson’s ratio [/]

Value 0.8 200 7850 0.3

To identify the influence of the numerical model on the quality of the expansion process, five varia-
tions of the numerical model were analysed. The first three numerical models (Figs. 10a-10c) represent
the exact geometry of the side panel and differ only concerning the applied boundary conditions. The
fourth numerical model (Fig. 10d) represents the exact geometry of the side panel, but with the doubled
thickness of the metal-sheet compared to the real structure. In the fifth numerical model (Fig. 10e) the
geometry is considerably simplified compared to the actual geometry.

Fixed support

#1

(a)

Free-free support

#2

(b)

Fixed support

#3

(c)

Double thickness
Free-free support

#4

2×t

(d)

Geometric simplification
Free-free support

#5

(e)

Figure 10: Numerical models; a) Model #1, b) Model #2, c) Model #3, d) Model #4, e) Model #5.
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In Fig. 11 the FRFs are shown for all five numerical models that were obtained at driving point
B (Fig. 4b) in the z-direction. In addition, the experimentally obtained FRF is also presented, which
serves as a reference. From the comparison shown, it can be seen that by applying standard boundary
conditions, none of the numerical models can accurately describe the real dynamic response of the side
panel. In terms of the geometry and boundary conditions, the closest to the real state is model #1,
which has fixed support on both long edges of the plate. This reflects the actual modelling difficulties
since it is practically impossible to deduce valid boundary conditions when the given component is
modelled independently of the whole system. Therefore, the entire expansion process will rely on the
inclusion of a so-called quasi-equivalent numerical model, which may not even reflect the dynamic
behaviour of a real structure.

0 20 40 60 80 100

f [Hz]

10−2

100

102
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/
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)]

Figure 11: FRFs of different numerical model at driving point B.
( ) - Exp. model, ( ) - Model #1, ( ) - Model #2, ( ) - Model #3, ( ) - Model #4, ( ) - Model #5

4.3. Sampling scheme and introduction of the aggregation index

To determine the influence of the experimental and numerical model parameters on the accuracy of
the expansion, representative samples of possible parameter combinations were created. The sampling
scheme considered the variation of the location and the number of excitation and response points in
the experimental response model. The 25,000 possible parameter combinations were created using the
Monte Carlo sampling scheme. The number of excitation points varied from 1 to 170 and the number
of response points from 1 to 7. Their locations can only vary between given positions defined in the
experimental setup presented in Fig. 4b.

The location of the excitation points is characterized by its distribution over the structure, using
the methodology for animal and plant spatial populations [43]. The nearest-neighbour method was
used to estimate the distribution of randomly selected excitation points. First, the mean distance to
the nearest neighbour is calculated using the following equation:

rA =

∑ne
i=1 ri
ne

, (10)

where ri is the distance to the nearest neighbour for the individual location i and ne is the number of
all the excitation locations for the specific case. For the given analysed area with size A, the density of
the excitation points is defined as:

ρ =
ne
A

(11)

and the expected distance to the nearest neighbour as:

rE =
1

2
√
ρ
. (12)

A comparative parameter between the different excitation locations compares the actual average dis-
tance to the nearest neighbour with the expected distance. This parameter is called the aggregation
index:

R =
rA
rE

. (13)
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If the spatial pattern is randomly generated in a given area, then the value of the parameter R is
around 1. However, if the value of parameter R comes close to 0, this indicates clustering of the
points at specific locations. In the case of spatially well-distributed points with minimal clustering, the
parameter has values of around R ≈ 2 or higher [43].

From Fig. 12 it can be seen that for a washing machine’s side panel, a large distribution of points
(large aggregation index) can only be achieved with a small number of excitation points. In the case
of a large number of excitation points, their dispersion is limited, and the aggregation index can reach
a maximum value of 1.8.
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Figure 12: Max. and min. values of aggregation index for a given number of excitation points.

4.4. Parametric analysis

Once the sampling scheme is established it is possible to perform the expansion process and char-
acterize its accuracy. The whole process is schematically presented in Fig. 13. During each iteration
in the main loop the particular numerical model represented the parent model within the SEMM
methodology. The overlay model is represented by an experimental response model that contains DoFs
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Figure 13: Parametric analysis.
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according to a predefined sampling scheme. In the last step, the consistency of the expansion process
is checked by comparing it with the experimental reference measurement using the FRAC and MAC
criteria. All DoFs were included in the comparison process, both those contained in the experimental
model (boundary DoFs) and extended ones (internal DoFs).

The results of the performed parametric analysis make it possible to characterize the influence of the
system parameters on the quality of the expansion process. Fig. 14 shows the influence of the number
of excitation points versus the aggregation index. The quality of the expansion process is assessed by
comparing the expanded response with an experimentally obtained reference measurement using the
FRAC and MAC criteria. A value of 1 indicates perfect agreement between compared measurements
for both criteria.

Based on the presentation in Fig. 14 it is clear that the accuracy of the expanded displacement field
improves when increasing the number of excitation points and the number of response points. It is
evident that the numbers of response and excitation points have the greatest influence on the quality
of the expansion process. However, to clearly demonstrate the influence of each individual parameter,
a more detailed analysis is performed.
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Figure 14: Results of parametric analysis with numerical model #1;
a) FRAC criterion, b) MAC criterion.

4.4.1. Influence of the aggregation index and the number of excitation points

The aggregation index was used to analyse the influence of the excitation points’ distribution over
the analysed object with regard to the quality of the expansion process. The physical significance of the
aggregation index is shown in Fig. 15, where three characteristic values of this parameter are shown. The
data present different configurations taken from the whole set of 25,000 possible combinations. Based
on the presented excitation-point distribution, it is evident that higher aggregation values indicate a
more even distribution of points over the whole geometry of the structure.

The influence of the aggregation index on the quality of the expansion process is shown in Fig. 16
by evaluating the MAC and FRAC criteria. It is clear that the aggregation index is strongly correlated
with the number of excitation points in the system. As the number of excitation points increases, their
scattering over the entire considered surface also increases. Their locations are not arbitrary and can
be located only at previously defined locations of the experimental model (Fig. 4b).
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R = 2.12

(c)

Figure 15: Examples of different distributions of excitation points; a) lightly clustered distribution, b) random
distribution, c) regular distribution.

1 50 100 150

No. of excitation points ne

0

1

2

3

4

A
g
g
re

g
a
ti

o
n

in
d
ex

R

1 10 20 30 40

1

2
Consistent
expansion

0.0

0.2

0.4

0.6

0.8

1.0

A
v
er

a
g
e

F
R

A
C

[/
]

(a)

1 50 100 150

No. of excitation points ne

0

1

2

3

4

A
g
g
re

g
a
ti

o
n

in
d
ex

R

1 10 20 30 40

1

2
Consistent
expansion

0.0

0.2

0.4

0.6

0.8

1.0

A
v
er

a
g
e

M
A

C
[/

]

(b)

Figure 16: Relation between the aggregation index R and the average FRAC and MAC values regarding the number of
excitation points in the experimental model in the case of the numerical model #1; a) FRAC, b) MAC.

( ) - no data
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As seen in Fig. 14, the increase in the accuracy of the expansion process is greatly influenced not
only by increasing the number of response points but also by increasing the number of excitation points,
which is particularly evident in Fig. 16. By increasing the number of excitation points, it is possible
to perform a consistent expansion process, which can be indicated by the high values of the MAC and
FRAC criteria. This is fairly obvious, yet the goal of any expansion process is to deduce a full-field
vibration response with as few as possible measured (excitation) points. Identifying the configurations
with a relatively small number of excitation points and a high aggregation index can also result in a
well-defined expansion process. Therefore, the charts in Fig. 16 are of great importance, as it is possible
to identify the parameter configurations that enable an accurate expansion process with a relatively
small number of excitation points. This region is zoomed-in in Fig. 16, where the area of consistent
expansion with a low number of excitation points is also marked.

Using the same analysis procedure could be determined the optimal sensor placement. In the
presented case, such analysis would not be relevant since only seven response sensors were available.
However, if the experimental model consists of a higher number of response points, it makes sense to
identify the locations of the response points that give the best expansion results.

4.4.2. Influence of the number of the response and excitation points

It has been shown that the number of excitation points has an important influence on the consis-
tency of the expansion process. In Fig. 17 the average FRAC and MAC values for the expanded and
reference configurations are shown versus the number of excitation and response points. The intense
lines represent the average value of a single criterion for a given number of response points. The cor-
responding shaded regions represent the area of standard deviation where there are 68.27 % of all the
results. When performing the experiment, a maximum of seven three-axis accelerometers (response
points) were used, which were located randomly across the side panel of the washing machine (Fig. 4).

From Fig. 17 it is clear that for a small number of excitation points (between 1 and 30), an additional
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Figure 17: Influence of number of response and excitation points in experimental modal in the case of the numerical
model #1; a) FRAC criterion, b) MAC criterion.

No. of acc.: ( ) - 1, ( ) - 2, ( ) - 3, ( ) - 4, ( ) - 5, ( ) - 6, ( ) - 7
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excitation point can contribute significantly to the accuracy of the expansion process. A small number
of excitation points can lead to an inconsistent reconstruction of the vibration response, since the
experimental model lacks information regarding the dynamic properties of the analysed structure. In
addition, a higher aggregation index (Figure 16) implies a better dispersion of the points, which leads
to a greater accuracy of the expansion process.

It is obvious that the greater the number of response and excitation points, the better the accuracy
of the expansion process. When at least 40 excitation points are included in the formulation, each
additional point only slightly improves the accuracy of the expansion. In this region, every additional
response point considerably improves the expansion accuracy, while the number of excitation points
has a negligible effect on expansions accuracy. In this case, an exponent dependency on the values of
the FRAC and MAC criteria can be observed with regard to the number of response points. Based on
the presented analysis, it can be concluded that 40 excitation points together with measurements at
four response points would guarantee a consistent expansion process for the given application.

4.4.3. Influence of the numerical model

This section presents the influence of the numerical model on the consistency of the expansion
process. Five different numerical models are considered within the expansion process, as shown in
Fig. 10. In general, it is clear (Fig. 18) that the most accurate expansion process can be obtained
with numerical models #1 and #2. It is somehow expected that #1 numerical model will perform
well since the boundary conditions are the most similar to the actual fixation of the side panel in the
washing machine (Fig. 4a). On the other hand, the good performance of the numerical model #2 is
surprising. Since free-free boundary conditions are proposed, the dynamics of the numerical model do
not reflect the actual behaviour of a given system. However, good performance can derive from the
fact that in this case the interconnections between the DoFs are still defined in a consistent manner.
It is evident that in the case of a freely supported structure, the influence of the boundary conditions
can be efficiently ”updated” by the integration of the experimental response model and that presents
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Figure 18: Influence of number of response points and different numerical models; a) FRAC criterion, b) MAC criterion.
Numerical model: ( ) - #1, ( ) - #2, ( ) - #3, ( ) - #4, ( ) - #5
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the main advantage of the proposed method.
In addition, Fig. 18 clearly demonstrates that only measurements at multiple response points guar-

antee an accurate expansion process. The values of FRAC and MAC criterion above 0.9 are usually
considered as good matching between compared results. In the presented case, five response points are
sufficient to meet that condition for an accurate expansion process if the numerical model #1 or #2
was to be considered.

The expansion process using the numerical model #3 results in lower values of the MAC and FRAC
criteria. This is somehow expected as the numerical model #3 proposes fixed boundary conditions at
all four edges, which does not reflect the actual fixation of the side panel to the washing machine’s
structure. Due to the applied boundary conditions, the physical interconnection between edge DoFs no
longer represents a consistent basis for expanding the experimental model. In the case of the numerical
model #4, a slightly lower accuracy of the expansion process is observed due to an incorrectly defined
thickness. This is due to the fact that the consistency of the physical connection between the DoFs
over the entire structure of the side panel is not correctly defined.

In an expansion process with the numerical model #5, over-simplifying the geometry significantly
affects the consistency of the interconnections between the DoFs. Because of the incorrectly defined
geometry, the relationship between the DoFs is not correctly defined, so this numerical model cannot
be considered as a consistent basis for the expansion process.

4.4.4. Demonstration of the expansion process using the SEMM method

The results of the presented analysis can be summarized in a comprehensive diagram (Fig. 19),
representing the influence of all the analysed parameters. This diagram shows the average values of
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Figure 19: Accuracy of expansions process versus the number of response and excitation points considering different
numerical models; a) FRAC criterion, b) MAC criterion.
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the MAC and FRAC criteria versus the numerical model and the number of excitation and response
points in the experimental response model. Based on this representation, it is evident that minimum
requirements to obtain a satisfactory expansion process in to include at least three response points in
the experimental response model. In addition, the SEMM expansion process should be performed with
either numerical model #1 or #2.

Here, the example of the expansion process is presented with numerical model #1 in conjunction
with an experimental model having three response points and 15 excitation points, as shown in Fig. 21b.
The configuration with the highest aggregation index is selected from all the possible configurations
with these parameters. As shown in Fig. 20 a high value of the aggregation index closely correlates
with the accuracy of the expansion process. For the selected configuration, the aggregation index has
a value of R = 1.75, which indicates well-distributed excitation points all over the analysed structure.

1 10 20 30 40

No. of excitation points ne

1

2

A
g
g
re

g
a
ti

o
n

in
d
ex

R Selected configuration

0.0

0.2

0.4

0.6

0.8

1.0

A
v
er

a
g
e

M
A

C
[/

]

Figure 20: Accuracy of the expansion process versus aggregation index R and number of excitation points considering
numerical model #1.

The entire expansion process was performed using the pyFBS package [40], as shown in Fig. 21a.
pyFBS is an open-source package written in Python and also includes the SEMM method. A mesh
of the structure was generated using Ansys 2019 R3, where the mass and stiffness matrices were also
defined. Using the pyFBS package, FRFs were generated in all the DoFs considered in the numerical
model using the model superposition method with the first 50 modes. Hence, the numerical model
consists of 170 excitation points in a single direction and three response points in all three directions.
The schematic presentation of the experimental response model’s receptance matrix is shown in Fig. 22,
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Figure 21: Schematic depiction of selected points contained in experimental model; a) experimental model in pyFBS
package, b) detailed presentation of observed points.
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together with the numerical receptance matrix.

A
D
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19 48 82 97J62 170114 138 14213312912512 1641 ... ...

numerical model measurements inclouded in
experimental model reference excitation location observed FRFs

(x, y and z direction)

Figure 22: Schematic presentation of receptance matrix of numerical and experimental model for expansion process.

After the expansion process, it was possible to establish the hybrid model and deduce the corre-
sponding model parameters. The values of the natural frequencies and damping ratios are presented
in Table 3. It is evident that the proposed expansion process inherits the real-life dynamic properties
from the experimental model. It is clear that the natural frequencies and damping ratios of the hybrid
model are practically identical to the experimentally obtained values. The corresponding mode shapes
were determined using the CMIF method (Fig. 23). Based on the visual comparison and evaluation
of the MAC criterion (Fig. 24) good agreement with an experimental reference can be confirmed. In
addition, the comparisons of the FRFs in all three response directions between points A and J are
shown in Fig. 25. The experimental reference and the expanded solution are presented along with
numerically obtained FRFs. Based on this comparison, good performance of the expansion process can
be observed.

Table 3: Comparison of modal parameters between reference experimental model and SEMM-expanded model.

Natural freq. # 1. 2. 3. 4. 5. 6.

Freq. [Hz]
Exp. 13,8 40,6 49,3 58,8 78,1 91,3

SEMM 13,8 40,5 49,3 58,7 74,4 91,4

Damp. [%]
Exp. 1,96 2,64 1,61 1,88 3,54 2,32

SEMM 1,88 2,74 2,21 1,64 4,06 2,92

(a) (b) (c) (d) (e) (f)

Figure 23: Reconstructed first 6 mode shapes of analysed side panel mounted on washing machine; a) 1st MS,
b) 2nd MS, c) 3rd MS, d) 4th MS, e) 5th MS, f) 6th MS.

The expansion process enables the measurement to be expanded to unmeasured points, and in
addition, it ”updates” the dynamic properties of the numerical model based on the inclusion of an
experimental response model. Given that the expansion process was carried out with a relatively small
number of response and excitation points, it still proves to be highly efficient if the expansion parameters
are properly selected.

18



1 2 3 4 5 6

Expanded model
nat. freq. #

1

2

3

4

5

6

E
x
p

er
im

en
ta

l
m

o
d
el

n
a
t.

fr
eq

.
#

0.0

0.2

0.4

0.6

0.8

1.0

M
A

C
[/

]

Figure 24: MAC criterion between reconstructed and reference experimental model.
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Figure 25: FRF comparison between response at point A (all three directions) and excitation at point J (in z-direction);
a) resp. in x direction, b) resp. in y direction, c) resp. in z direction.

- num., - exp., - SEMM expansion.

5. Conclusion

This study provides a comprehensive analysis of the parameters influencing the quality of the SEMM
expansion process. Traditionally, the SEMM method is used to couple the experimental and numerical
models of the same system. In this article, the expansion process from the limited measurement to
full-field dynamic response is performed using a so-called quasi-equivalent numerical model. As shown
in the presented case study, it is challenging to develop a valid numerical model of the sub-component
while embedded in the system, especially due to the complex connectivity conditions at the interface
with other sub-components.

The SEMM expansion process is more accurate the more excitations and response points are in-
cluded in the experimental response model, which is an obvious finding. Systematic parametric analyses
have proved that it is possible to get an accurate expansion process with a relatively small number of
response and excitation points. This is feasible only when the experimentally observed DoFs are well
scattered over the given object, and the numerical model presents a consistent description of the con-
nectivity between the DoFs. High values of the aggregation index directly imply a higher dispersion of
DoFs included in the experimental model, which results in a more accurate expansion process, especially
with a small number of excitation points. The SEMM expansion method works best if the experimental
model contains impact and response DoFs, distributed over the analysed structure. Good observability
and controllability of the system is crucial step for accurate expansion results. The number and location
of impact and response points are therefore case-specific.

A successful expansion is also closely correlated with the consistency of the numerical model. In
the presented case this was mainly influenced by the geometry of the component, while the mass and
stiffness properties turn out to be less influential. While it is hard to quantify the generality of this
conclusion based on one single result, it must be noted that the changes made to mass and stiffness
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where significant and the changes in the geometry’s simplicity were within reason. Therefore, the
authors find this conclusion to be generally applicable to similar components.

The final experimental demonstration showed that the SEMM-expansion process can serve as an
efficient and accurate method for evaluating the full-field dynamic response of real complex systems
through proper parameter selection. To use the proposed methodology for different applications, it
is necessary to establish a reference model. Using the presented systematic analysis the sufficient
number and locations of excitation and response points is determined together with the appropriate
numerical model. In the following iterations of product development, a full-field dynamic response
can be predicted using a limited number of measured points, which reduces the time required for the
examination of the individual development stage.
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